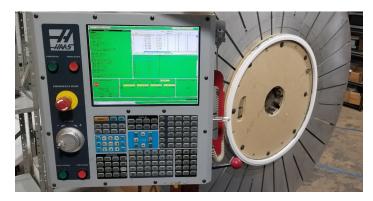


TABLE OF CONTENTS

About Us2	Part Numbering System	7, 8
Anatomy of a Rotary Lip Seal3	Dash # Designations	9, 10
Metal Cased Lip Seal Series4	Hardware Design	11
Polymer Lip Seal Series5	Application Data Sheet	12
Lip Materials6		

ABOUT US

Founded in 2008, Palmetto Precision Polymers has been a leader in sealing technology for more than a decade. Specializing in difficult applications combining temperature extremes, high speeds, corrosive fluids or high pressures, there is no challenge too large.

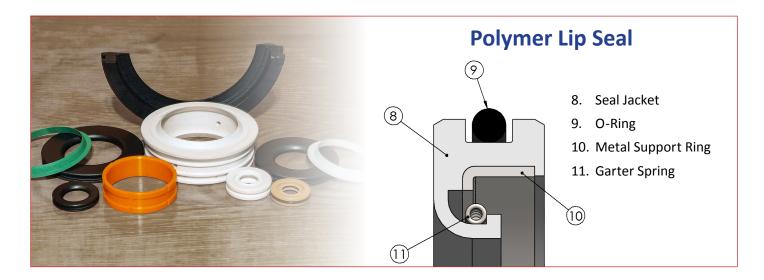

The latest addition to the Palmetto family is our high-speed rotary seal manufacturing facility located in Leesville, South Carolina. At this facility we specialize in metal cased and all polymer lip seals. All manufacturing of these seals is performed in house using our proprietary design and manufacturing processes. The equipment we use includes:

- HAAS CNC lathes for cutting PTFE elements
- Manual lathes for roll forming
- Punch presses for punching out metal blanks & cans
- Metal punch presses
- Metal shears
- Manual mills
- Laser etchers
- QC equipment & gages
- Metal chop saws, both vertical & horizontal
- Tool grinders

With this equipment we can produce metal cased seals in aluminum, cold rolled steel, 4010 alloy and most 300 series stainless steels. Other more exotic case materials are available upon request. Contact Palmetto engineering for specific materials. Sizes for our metal cased lip seals range from a maximum O.D. of 17" to a minimum I.D. of 0.3". Various cross sections and widths are available in each size. (See the Dash # Designations chart on page 9 for more information.)

For a more budget friendly alternative to the metal cased lip seals, we offer our polymer lip seal line of non-metallic rotary lip seals. Polymer lip seals are machined from a base polymer, usually PTFE and instead of a metal case, they use an o-ring to seal on the O.D. This type of seal is easier to install and remove but requires additional gland design consideration to be effective. (See the Hardware Design section of this catalog on page 11 for additional details.) Polymer lip seal sizes range from 20" O.D. to 0.09" I.D. with custom widths and cross sections available.

ANATOMY OF A ROTARY LIP SEAL


Rotary lips seals are designed to handle a wide range of applications. Generally, they are best suited for high-speed / low-pressure service. Speeds up to 8000 SFPM and pressures up to 250 psi are typical ranges for these types of seals.

To achieve sealing under these conditions, the seals are made up of several components. The drawings below define the components of metal cased and polymer lip seals.

Metal Cased Lip Seal 5 (1)

- 1. Metal Case
- Gasket
- 3. Wiper Lip
- 4. PTFE Lip
- 5. Metal Spacer
- 6. Hydrodynamic Lip
- Metal Spacer

METAL CASED LIP SEAL SERIES

CROSS SECTION	SERIES	RECOMMENDED SEAL WIDTH (see pages 9 & 10)	DESCRIPTION
	450	Narrow	Standard single lip - A good general purpose seal for a wide variety of applications. Pressures to 250 psi and temperatures to 400° F.
	460	Medium	Standard lip & wiper seal - The addition of a wiper helps keep the seal area free of environmental contaminants.
	451	Narrow	Single elf shoe lip - The "elf shoe" design adds extra sealing force at the point of contact. Higher wear rates can result.
	461	Medium	Single elf shoe lip & wiper - The elf shoe plus wiper configuration is great for tight sealing in rugged environments.
	452/453	Narrow	Single hydro lip (452 clockwise / 453 counter clockwise) - A spiral groove in the sealing lip pumps fluid away from the seal chamber. Consult factory for direction of rotation.
	462/463	Medium	Hydro lip & wiper (462 clockwise / 463 counter clockwise) - Same as the 452/453 but with the added benefit of a wiper.
	454	Narrow	Single machined lip - Provides a more precise and predictable contact area and load. Good for low friction requirements.
	464	Medium	Machined lip & wiper - Same as 454 but with the added benefit of a wiper.
	455	Narrow	Single lip with garter spring - For use in situations of runnout and eccentricity. The garter spring provides additional sealing force to keep the lip in contact with the shaft.
	465	Medium	Single lip with garter spring & wiper - Same as 455 but with the added benefit of a wiper.
	456	Wide	Two standard lips - Provides redundant sealing and additional seal life in critical sealing applications.
	466	Wide	Two standard lips & wiper - Same as 456 but with the added benefit of a wiper.
	457/458	Wide	Standard lip & hydro lip (457 clockwise / 458 counter clockwise) - Spiral groove provides pumping action backed up by a standard lip for redundancy. Contact factory for direction of rotation.
	467/468	Wide	Standard lip & hydro lip (467 clockwise / 468 counter clockwise) with wiper - Same as 457/458 but with the added benefit of a wiper.

POLYMER LIP SEAL SERIES

CROSS SECTION	SERIES	RECOMMENDED SEAL WIDTH (see pages 9 & 10)	DESCRIPTION
	420	Narrow	Standard lip / Normal Temperatures - An all polymer version of the standard 450 series seal. Can be split for installation into solid glands for non critical service.
	430	Narrow	Standard lip / Extreme Temperatures ¹ - Reinforced with a metal support ring, the extreme temperature design can be used up to 500° F.
	421	Narrow	Elf Shoe Lip / Normal Temperatures - The elf shoe lip design creates additional radial load for tighter sealing.
	431	Narrow	Elf Shoe Lip / Extreme Temperatures ¹ - The elf shoe plus extreme temperature is an excellent choice for difficult combinations of temperature, pressure and speed.
	422	Narrow	Machined Lip / Normal Temperatures - Gives precise control of contact force and point of contact in friction sensitive applications.
	432	Narrow	Machined Lip / Extreme Temperatures ¹ - Great for large diameter and/or high temperature applications
	423	Narrow	Garter Spring Lip / Normal Temperatures - For situations of runout and eccentricity, the garter spring helps keep the sealing lip in contact with the shaft while static or rotating.
	433	Narrow	Garter Spring Lip / Extreme Temperatures ¹ - Same as 423 but best suited for high temperatures or large diameters.
	424	Narrow	Double Lip / Normal Temperatures - Provides redundant sealing contact points for minimum leakage and long life. Maximum PV 200,000 lubricated, 50,500 non-lubricated.

¹ Extreme temperature designs should also be used with polymer seals larger than 4-1/2" in diameter. Consult factory when specifying extreme temperature designs.

^{*} Unless otherwise noted, maximum PV 75,000 lubricated, 37,500 non-lubricated.

LIP MATERIALS

MATERIAL CODE	DESCRIPTION	TEMPERATURE RANGE (°F)	APPLICATION
01	Virgin PTFE	-425 / +450	FDA approved material for use in static and slow dynamic applications.
02	Carbon/Graphite PTFE - Low Fill	-320 / +475	Good wear resistance in low lubricity fluids.
03	Glass Filled PTFE	-250 / +550	Excellent electrical properties and a low coefficient of friction.
04	Polymide Filled PTFE	-400 / +550	A non-abrasive polymer and a good choice for applications involving softer mating surfaces like aluminum or other plastics.
05	Glass/Moly PTFE - High Fill	-200 / +575	Highly wear resistant in high-speed applications. Best used on hardened, smooth shafts.
06	UHMW-PE	-320 / +200	Excellent wear and abrasion resistance in water based media.
07	Ekonol Filled PTFE	-200 / +550	Great for running against softer metal shafts and in high-temperature environments.
08	Graphite Filled PTFE	-250 / +550	A high-speed material used in poorly lubricated services.
09	Carbon/Graphite PTFE – High Fill	-200 / +550	Increased wear resistance compared to 02 material with additional filler.
10	Moly Filled PTFE	-320 / +500	Light duty material excellent in dry gas service.
11	Glass/Moly – Low Fill	-275 / +500	Same as 05 material but with lower fill percentage. For lighter duty services.
12	Thermoplastic Elastomer	-80 / +275	A very tight sealing material with good wear resistance, as well as low temperature and corrosion resistance.
13	Carbon/Ryton Filled PTFE	-200 / +550	Polymer reinforced compound for difficult combinations of temperature and pressure
14	ETFE - Tefzel™	-100 / +300	High resistance to radiation. Consult factory before specifying.

^{*} Unless otherwise noted, maximum PV 75,000 lubricated, 37,500 non-lubricated.

PART NUMBERING SYSTEM

Many applications are sized for industry standard glands and can be ordered using the part number designation below. For custom sizes, contact Palmetto Engineering.

How to Order Palmetto Metal Cased Rotary Lip Seals

SEAL SERIES

SEAL WIDTH

304

CASE & SPACER

MATERIALS

GASKET MATERIAL

DASH NUMBER

LIP **MATERIAL**

SEAL SERIES

450-468 = (see page 4)

DASH NUMBER

01-135 = (see pages 9 & 10)

SEAL WIDTH

N = Narrow

M = Medium (see pages 9 & 10)

W = Wide

LIP MATERIAL

01-14 = (see page 6)

CASE & SPACER MATERIALS

CASE

304 = 304 Stainless Steel

316 = 316 Stainless Steel

LCS = Low Carbon Steel

A = Aluminum

X = Custom

SPACER

4 = 304 Stainless Steel

6 = 316 Stainless Steel

L = Low Carbon Steel

A = Aluminum

X = Custom

GASKET MATERIAL

F = Fluorocarbon Elastomer (FKM)

N = Nitrile

X = Custom

[CONTINUED] PART NUMBERING SYSTEM

How to Order Polymer Lip Seals

SEAL

SEAL SERIES

420 -

WIDTH

DASH

NUMBER

SUPPORT RING MATERIAL GARTER SPRING MATERIAL

E - NI

LIP MATERIAL O-RING MATERIAL

SEAL SERIES

420-433 = (see page 5)

DASH NUMBER

01-135 = (see pages 9 & 10)

SEAL WIDTH

N = Narrow

M = Medium (see pages 9 & 10)

W = Wide

LIP MATERIAL

01-14 = (see page 6)

SUPPORT RING MATERIAL

304 = 304 Stainless Steel

316 = 316 Stainless Steel

LCS = Low Carbon Steel

A = Aluminum

N = No Support Ring

O-RING MATERIAL

F = Fluorocarbon Elastomer (FKM)

N = Nitrile

X = Custom

GARTER SPRING MATERIAL

304 = 304 Stainless Steel

316 = 316 Stainless Steel

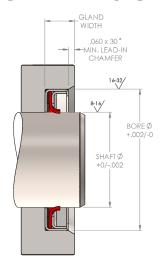
N = No Garter Spring

DASH # DESIGNATIONS

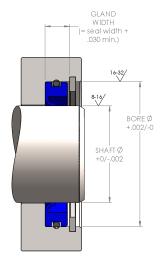
	SEAL WIDTH					SEAL WIDTH					
DASH #	SHAFT Ø	BORE Ø		MEDIUM (M)	WIDE (W)	DASH #	SHAFT Ø	BORE Ø	NARROW (N)		WIDE (W)
01	0.500	0.999	0.250	0.313	0.375	36	1.625	2.250	0.313	0.375	0.438
02	0.500	1.124	0.250	0.313	0.375	37	1.625	2.374	0.313	0.375	0.438
03	0.500	1.250	0.250	0.313	0.375	38	1.625	2.502	0.313	0.375	0.438
04	0.625	1.124	0.250	0.313	0.375	39	1.625	2.623	0.313	0.375	0.438
05	0.625	1.250	0.250	0.313	0.375	40	1.750	2.374	0.313	0.375	0.438
06	0.625	1.375	0.250	0.313	0.375	41	1.750	2.502	0.313	0.375	0.438
07	0.625	1.499	0.250	0.313	0.375	42	1.750	2.623	0.313	0.375	0.438
08	0.750	1.250	0.250	0.313	0.375	43	1.750	2.750	0.313	0.375	0.438
09	0.750	1.375	0.250	0.313	0.375	44	2.000	2.623	0.375	0.437	0.500
10	0.750	1.499	0.250	0.313	0.375	45	2.000	2.750	0.375	0.437	0.500
11	0.750	1.624	0.250	0.313	0.375	46	2.000	2.875	0.375	0.437	0.500
12	0.875	1.375	0.250	0.313	0.375	47	2.000	3.000	0.375	0.437	0.500
13	0.875	1.499	0.250	0.313	0.375	48	2.000	3.125	0.375	0.437	0.500
14	0.875	1.624	0.250	0.313	0.375	49	2.125	2.750	0.375	0.437	0.500
15	0.875	1.752	0.250	0.313	0.375	50	2.125	2.875	0.375	0.437	0.500
16	1.000	1.499	0.250	0.313	0.375	51	2.125	3.000	0.375	0.437	0.500
17	1.000	1.624	0.250	0.313	0.375	52	2.125	3.125	0.375	0.437	0.500
18	1.000	1.752	0.250	0.313	0.375	53	2.125	3.251	0.375	0.437	0.500
19	1.000	1.874	0.250	0.313	0.375	54	2.250	3.000	0.375	0.437	0.500
20	1.125	1.624	0.313	0.375	0.438	55	2.250	3.125	0.375	0.437	0.500
21	1.125	1.752	0.313	0.375	0.438	56	2.250	3.251	0.375	0.437	0.500
22	1.125	1.874	0.313	0.375	0.438	57	2.250	3.371	0.375	0.437	0.500
23	1.125	2.000	0.313	0.375	0.438	58	2.375	3.125	0.375	0.437	0.500
24	1.250	1.752	0.313	0.375	0.438	59	2.375	3.251	0.375	0.437	0.500
25	1.250	1.874	0.313	0.375	0.438	60	2.375	3.371	0.375	0.437	0.500
26	1.250	2.000	0.313	0.375	0.438	61	2.375	3.500	0.375	0.437	0.500
27	1.250	2.125	0.313	0.375	0.438	62	2.500	3.251	0.375	0.437	0.500
28	1.375	2.000	0.313	0.375	0.438	63	2.500	3.371	0.375	0.437	0.500
29	1.375	2.125	0.313	0.375	0.438	64	2.500	3.500	0.375	0.437	0.500
30	1.375	2.250	0.313	0.375	0.438	65	2.500	3.623	0.375	0.437	0.500
31	1.375	2.374	0.313	0.375	0.438	66	2.625	3.371	0.375	0.437	0.500
32	1.500	2.125	0.313	0.375	0.438	67	2.625	3.500	0.375	0.437	0.500
33	1.500	2.250	0.313	0.375	0.438	68	2.625	3.623	0.375	0.437	0.500
34	1.500	2.374	0.313	0.375	0.438	69	2.625	3.751	0.375	0.437	0.500
35	1.500	2.502	0.313	0.375	0.438	70	2.750	3.500	0.375	0.437	0.500

[CONTINUED] DASH # DESIGNATIONS

			SEAL WIDTH				
DASH #	SHAFT Ø	BORE Ø	NARROW (N)		WIDE (W)		
71	2.750	3.623	0.375	0.437	0.500		
72	2.750	3.751	0.375	0.437	0.500		
73	2.750	3.875	0.375	0.437	0.500		
74	2.875	3.623	0.375	0.437	0.500		
75	2.875	3.751	0.375	0.437	0.500		
76	2.875	3.875	0.375	0.437	0.500		
77	2.875	4.003	0.375	0.437	0.500		
78	3.000	3.751	0.375	0.437	0.500		
79	3.000	3.875	0.375	0.437	0.500		
80	3.000	4.003	0.375	0.437	0.500		
81	3.000	4.125	0.375	0.437	0.500		
82	3.125	4.125	0.375	0.437	0.500		
83	3.125	4.249	0.375	0.437	0.500		
84	3.125	4.376	0.375	0.437	0.500		
85	3.125	4.500	0.375	0.437	0.500		
86	3.250	4.249	0.375	0.437	0.500		
87	3.250	4.376	0.375	0.437	0.500		
88	3.250	4.500	0.375	0.437	0.500		
89	3.250	4.626	0.375	0.437	0.500		
90	3.375	4.249	0.375	0.437	0.500		
91	3.375	4.376	0.375	0.437	0.500		
92	3.375	4.500	0.375	0.437	0.500		
93	3.375	4.626	0.375	0.437	0.500		
94	3.500	4.376	0.437	0.500	0.625		
95	3.500	4.500	0.437	0.500	0.625		
96	3.500	4.626	0.437	0.500	0.625		
97	3.500	4.751	0.437	0.500	0.625		
98	3.625	4.626	0.437	0.500	0.625		
99	3.625	4.751	0.437	0.500	0.625		
100	3.625	4.876	0.437	0.500	0.625		
101	3.625	4.999	0.437	0.500	0.625		
102	3.875	4.876	0.437	0.500	0.625		
103	3.875	4.999	0.437	0.500	0.625		
104	3.875	5.125	0.437	0.500	0.625		
105	3.875	5.251	0.437	0.500	0.625		


5.4611		2025	SEAL WIDTH				
DASH #	SHAFT Ø	BORE Ø	NARROW (N)	MEDIUM (M)	WIDE (W)		
106	4.000	4.999	0.437	0.500	0.625		
107	4.000	5.125	0.437	0.500	0.625		
108	4.000	5.251	0.437	0.500	0.625		
109	4.000	5.375	0.437	0.500	0.625		
110	4.250	5.251	0.437	0.500	0.625		
111	4.250	5.375	0.437	0.500	0.625		
112	4.250	5.501	0.437	0.500	0.625		
113	4.250	5.625	0.437	0.500	0.625		
114	4.500	5.501	0.437	0.500	0.625		
115	4.500	5.625	0.437	0.500	0.625		
116	4.500	5.751	0.437	0.500	0.625		
117	4.750	5.751	0.437	0.500	0.625		
118	4.750	6.000	0.437	0.500	0.625		
119	5.000	6.000	0.500	0.625	0.750		
120	5.000	6.250	0.500	0.625	0.750		
121	5.000	6.375	0.500	0.625	0.750		
122	5.250	6.250	0.500	0.625	0.750		
123	5.250	6.375	0.500	0.625	0.750		
124	5.250	6.500	0.500	0.625	0.750		
125	5.250	6.625	0.500	0.625	0.750		
126	5.500	6.500	0.500	0.625	0.750		
127	5.500	6.625	0.500	0.625	0.750		
128	5.500	6.750	0.500	0.625	0.750		
129	5.500	6.875	0.500	0.625	0.750		
130	5.750	6.750	0.500	0.625	0.750		
131	5.750	6.875	0.500	0.625	0.750		
132	5.750	7.000	0.500	0.625	0.750		
133	5.750	7.125	0.500	0.625	0.750		
134	6.000	7.125	0.500	0.625	0.750		
135	6.000	7.500	0.500	0.625	0.750		
				al standard			

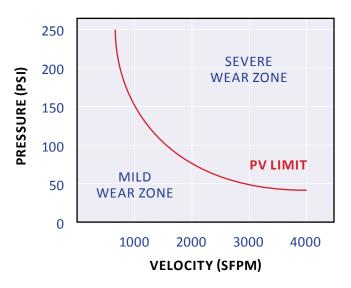
^{*} Dash #'s based on RMA oil seal standard sizes. Contact Palmetto Engineering for custom sizes.


HARDWARE DESIGN

Gland design is one of the most critical considerations for successful sealing. Most seals are designed around the gland dimensions to ensure proper fit and contact forces. The gland dimensions, tolerances, surface finish and hardness all contribute to the success (or failure) of any sealing system. Below are some gland definitions and general guidelines for hardware preparation.

METAL CASED LIP SEAL GLAND DESIGN

POLYMER LIP SEAL GLAND DESIGN



PRESSURE — VELOCITY OR P-V LIMIT

Also very important to consider when choosing which seal to use is the combination of system pressure and shaft velocity. Rotary lips seals are designed for high speeds but not necessarily high pressures. The graph below can help determine if your application is suitable for a rotary lip seal.

P-V LIMIT FOR FORMED LIP SEALS

PV = (system pressure x surface velocity in SFPM)

APPLICATION DATA SHEET

CUSTOMER INFORMATION

COMPANY NAME:	CONTACT NAME:		
STREET ADDRESS:	CITY:	STATE:	ZIP CODE:
EMAIL ADDRESS:	PHONE NUMBER:		

APPLICATION DATA

SHAFT Ø:	BORE Ø:	GLAND WIDTH:	SPEED (RPM):	
TOLERANCE:	TOLERANCE:	TOLERANCE:		
SYSTEM PRESSURE—	TEMPERATURE—	MEDIA TO BE SEALED:		
MIN:	MIN:			
OPERATING:	OPERATING:	DIRECTION OF SHAFT ROTATION		
MAX:	MAX:	(AS VIEWED FROM PRESSURE SIDE):	CW	CCW

SKETCH / ADDITIONAL INFORMATION

Palmetto Precision Polymers — South Carolina High-Speed Rotary Lip seals

6501 Augusta Highway, Leesville, SC 29070 P: 936-537-6774 | palmetto@consolidated.net

Palmetto Precision Polymers — Texas Machined Plastics and Spring Energized Seals

13843 Hwy 105 West Ste. 429, Conroe, TX 77304 P: 936-588-6050 | kirk@palmettoseals.com

palmettoprecisionpolymers.com